Search for:

5. SOAPSonar – Defining Success Criteria


Just because a response code is response code is 200 range or not in the 400 range, does not meant that the test met with with the business requirements a tester is required to test for. For a list of Status Codes look here. This is represented by the Success criteria or Baseline arrow vs Outcome.

SOAPSonar Test Cycle

Perhaps your test case requires a specific code, value, response time or some other form of validation. Responding with a fax number instead of phone number, or the wrong persons number, is still a defect. For this reason, SOAPSonar offers a variety configuration options, to define what is indeed a successful test case and what is not. Lets start again with our SOAP example we used in Tutorial 4, and use the same .csv data sources for calculate and maps

1. Launch SOAPSonar and Open the test case from Tutorial 4. If you did not do that tutorial, now is a good time. Check that you have both Automation data sources under Configuration, Data Sources by going and in checking the columns. Check also you have our SOAP calculate Service and JSON Google Maps service.

1 check ADS

2. Lets use Subtract_1 service. Select it,. then in a= right-click and select [ADS] Automation Data Source, Quick Select, Calculate, Input a. Then in b= select [ADS],Input bCommit.

2. Subtract

3. Lets run this in run view. Select Run View, delete any existing test cases and drag Subtract_1 under the Default Group. Commit and Run Suite. How many test cases did you run and how many passed? I had all 10 pass.

3 Run suite

4. Now lets go back to Project View and define some additional success criteria. Select Subtract_1 and next to the Input Data tab, is a Success Criteria Tab. Select Success Criteria Tab and Add Criteria Rule.

4. Add success

5. Lets first add a rule for Response Time. Performance is after all a functional requirement and so should be part of functional testing. Lets just say 1 second as max value.

5 Timing

6. Now lets compare the result in column 4 of our .csv. Add Criteria Rule, Document, XPath Match. Then select your new rule and refresh if you need to. Look for SubtractResult parameter and right-click on it. Select Compare Element Value. Notice the Criteria Rules tab changes.

6. XPath

7. Select The Criteria Rule tab, then set match function to Exact Match. Then Choose Dynamic Criteria, Independent Column Variables, Calculate.csvSubtract Result Column from our [ADS]. Ok Commit.

7 Dynamic

8. Switch to Run View and lets run this test again. Commit, Run Suite. This time 9 passed and 1 failed. If you check that .csv file, line 3 subtract value answer column is wrong. The result being 10, yet the expected value being 5. Without defining Success criteria, this would have being missed. Performance wise I had no failures and responses were good.

8 Run

9. Now lets see if we can do this with JSON. Select Google Maps test, in Run View, clear the DefaultGroup, drag Google Maps over and Commit and Run Suite to make sure it is working. All 6 of mine passed.

9 Maps

10. Back in Project View. Select The Success Criteria Tab, and Add Criteria Rule, Timing, for a maximum response of 1 second.  Then Add Criteria Rule, Document, XPath Match. Select it and look for the distance, value. Right-click on it and Compare Element Value.

10 Google

11. Select the Criteria Rules, set Match Function to Exact Match and select icon Choose Dynamic Criteria, Independent Column Variables, your googlemaps.csv, Meters column. Ok, Commit.

11 Exact

12. Run Default Suite. This time 2 of the 6 test cases failed for me, although the time was near, in both cases, it was because my csv had a different value. We will look into report view in our next tutorial.

12 Report

Conclusion

Being able to mix performance, and various header and message requirements into a multiple rule set to define success criteria, allows for automation to reflect business requirements. This helps ensure that you are not just testing Status codes, or incorrect functionality, but the full response. Taking the time to define each test case with the right success criteria initially ensures that your baseline, performance and other systems tests are more accurate.

The arrow from the enablers to the data sources in the diagram at the top of the page, indicates the ability to use direct SQL or other calls to enablers to compare the values with those found in the response. Allowing success criteria to include validating the service is selecting the right value from the enabler.

Comments?

Continuous Testing in Agile

Along with performance testing, there were 2 other themes that continually came up in conversations during STAR Canada.

  1. How should QA integrate in a Agile environment
  2. The need for “Continuous Testing”.

While there are thousands of articles about Continuous Testing, and hundreds of thousands on Agile, there seems little on both. Perhaps due to some apparent conflicts.

Lets look at a theoretical QA in an agile environment. Say your organization Sprints are 2 weeks in length, each scrum having 8-10 members for manageability. Due to project time constraints,  there are 5 scrums working concurrently, each focussed on a different component of development of your application. What test cycles are done as part of the sprint and what cycles are done outside or as cross functional teams?

Agile Testing Levels

It was pointed out that although common, doing only unit tests and integration testing on your Sprints code, then jumping to acceptance testing of that sprint, is not Agile. Agile should in fact have all test stages built into the Sprint. Many companies ignore various test cycles like load, integration and security testing of the end to end system as there simply is not time in each Sprint.

An alternate approach is to created independent teams outside of the Agile development. Their role is to test integration, load, security and systems in integrated environments. Defects identified are then fed back into the scrum meetings and allocated to particular Sprint. This also is not really Agile, falling into some kind of hybrid. The challenge here is that issues are often identified after sprints are finished and so not really continuous testing either.

A second approach, was to create cross functional roles were the scrum masters and one or more members of each sprint were allocated to doing systems level testing and possibly fixes. These cross functional teams, would near the end of each sprint, break out of their old scrum into the new role. The challenge with this approach is that on shorter sprints, and large systems, they can land up spending more time in the cross functional role than in their own scrum.

Continuous Testing

Continuous Testing is somewhat the same as Baseline and Regression Testing, but need not only testing against a Baseline. Its about continually testing while developing through the entire SDLC. The benefit that issues can be identified far earlier (Shift Left approach) resulting in lower costs to address. Agile environments at first glance, seem to favour continuous testing, but does that include, regression, integration and systems testing across Sprints? If each test case takes 9 minutes to complete, 1 tester can only run 53 test cases in a day or 533 tests in a Sprint. This is simply not enough coverage to test all systems and other tests continuously. The result, is partial or low test coverage.

Enter Automation

If as part of each Sprint, a fully developed set of test cases are developed by each Sprint in the same application (eg SOAPSonar) covering their development efforts. The incremental work to role these up into test cases for integration, load etc would be minimal. Each sprint then shares a set of Integration, performance, load and regression etc tests that they simply run as part of their sprint. Being automated, these can even run after hours. The result is continuous testing of both at the Systems level and the Sprint level, without the heavy resource requirements of manual testing. issues be the system wide, or sprint level can then be addressed in Sprint.

Conclusion

The concern with this is the same as with any automation project, “Will The Development of the Automation Scripts Not Take More Time than the Resulting Benefit.” This is a tool selection question. Finding the right tool for your team to use to minimize the time taken developing and maintaining various test cases from function through load and regression, to acceptance testing.

Would you like to weigh in with your thoughts or comments on the subject?